博客
关于我
计算矩阵幂次的一般性方法
阅读量:267 次
发布时间:2019-03-01

本文共 363 字,大约阅读时间需要 1 分钟。

初学线性代数时,对于计算矩阵幂次,是采用所谓找规律的方法,这种方法其实非常不科学。因为这样能计算的都是特别特殊的矩阵,对于一般性的矩阵,这种方法没有意义,而且所谓的找规律,只是简单的计算矩阵乘法,是命题人凑给你的。并不能看到问题的本质。

 

下面介绍一些一般性的方法

一.rank(A)=1 的矩阵,且能够分解为列向量乘行向量的形式。

 

二. 可对角化的矩阵

需要对角化矩阵

 

三. 利用凯莱哈密顿定理分析出矩阵的性质

将矩阵幂乘转化为矩阵乘法(计算量小于对角化)

 

四. 利用约当标准型中零幂矩阵的性质。

任意一个方阵不一定能对角化,但总相似于约当标准型。约当标准型中的约当块满足零幂性质。

五. 对于分块矩阵

先对矩阵进行分块,在进行计算。

 

例题:

先分块,2*2矩阵块使用凯莱哈密顿定理

约当标准型,分解为E+A形式,二项式展开。

 

 

 

转载地址:http://limv.baihongyu.com/

你可能感兴趣的文章
NIH发布包含10600张CT图像数据库 为AI算法测试铺路
查看>>
Nim教程【十二】
查看>>
Nim游戏
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NIO三大组件基础知识
查看>>
NIO与零拷贝和AIO
查看>>
NIO同步网络编程
查看>>
NIO基于UDP协议的网络编程
查看>>
NIO笔记---上
查看>>
NIO蔚来 面试——IP地址你了解多少?
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
NIS认证管理域中的用户
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>