博客
关于我
计算矩阵幂次的一般性方法
阅读量:267 次
发布时间:2019-03-01

本文共 363 字,大约阅读时间需要 1 分钟。

初学线性代数时,对于计算矩阵幂次,是采用所谓找规律的方法,这种方法其实非常不科学。因为这样能计算的都是特别特殊的矩阵,对于一般性的矩阵,这种方法没有意义,而且所谓的找规律,只是简单的计算矩阵乘法,是命题人凑给你的。并不能看到问题的本质。

 

下面介绍一些一般性的方法

一.rank(A)=1 的矩阵,且能够分解为列向量乘行向量的形式。

 

二. 可对角化的矩阵

需要对角化矩阵

 

三. 利用凯莱哈密顿定理分析出矩阵的性质

将矩阵幂乘转化为矩阵乘法(计算量小于对角化)

 

四. 利用约当标准型中零幂矩阵的性质。

任意一个方阵不一定能对角化,但总相似于约当标准型。约当标准型中的约当块满足零幂性质。

五. 对于分块矩阵

先对矩阵进行分块,在进行计算。

 

例题:

先分块,2*2矩阵块使用凯莱哈密顿定理

约当标准型,分解为E+A形式,二项式展开。

 

 

 

转载地址:http://limv.baihongyu.com/

你可能感兴趣的文章
Nacos入门过程的坑--获取不到配置的值
查看>>
Nacos原理
查看>>
Nacos发布0.5.0版本,轻松玩转动态 DNS 服务
查看>>
Nacos启动异常
查看>>
Nacos命名空间配置_每个人用各自自己的命名空间---SpringCloud Alibaba_若依微服务框架改造---工作笔记001
查看>>
Nacos和Zookeeper对比
查看>>
Nacos在双击startup.cmd启动时提示:Unable to start embedded Tomcat
查看>>
Nacos基础版 从入门到精通
查看>>
Nacos如何实现Raft算法与Raft协议原理详解
查看>>
Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Nacos实战攻略:从入门到精通,全面掌握服务治理与配置管理!(上)
查看>>
Nacos实战攻略:从入门到精通,全面掌握服务治理与配置管理!(下)
查看>>
Nacos心跳机制实现快速上下线
查看>>
nacos报错com.alibaba.nacos.shaded.io.grpc.StatusRuntimeException: UNAVAILABLE: io exception
查看>>
nacos服务提供和发现及客户端负载均衡配置
查看>>
Nacos服务注册与发现demo
查看>>
Nacos服务注册与发现的2种实现方法!
查看>>
nacos服务注册和发现原理简单实现案例
查看>>
Nacos服务注册总流程(源码分析)
查看>>
nacos服务注册流程
查看>>